Abstract

This article proposes a new hybrid least squares-support vector machine and artificial bee colony algorithm (ABC-LS-SVM) for multi-hour ahead forecasting of global solar radiation (GHI) data. The framework performs on training the least squares-support vector machine (LS-SVM) model by means of the ABC algorithm using the measured data. ABC is developed for free parameters optimization for the LS-SVM model in a search space so as to boost the forecasting performance. The developed ABC-LS-SVM approach is verified on an hourly scale on a database of five years of measurements. The measured data were collected from 2013 to 2017 at the Applied Research Unit for Renewable Energy (URAER) in Ghardaia, south of Algeria. Several combinations of input data have been tested to model the desired output. Forecasting results of 12 h ahead GHI with the ABC-LS-SVM model led to the root-mean-square error (RMSE) equal to 116.22 Wh/m2, Correlation coefficient r = 94.3%. With the classical LS-SVM, the RMSE error equals to 117.73 Wh/m2 and correlation coefficient r = 92.42%; for cuckoo search algorithm combined with LS-SVM, the RMSE = 116.89 Wh/m2 and r = 93.78%. The results achieved reveal that the proposed hybridization scheme provides a more accurate performance compared to cuckoo search-LS-SVM and the stand-alone LS-SVM.

References

1.
Rabehi
,
A.
,
Guermoui
,
M.
, and
Lalmi
,
D.
,
2018
, “
Hybrid Models for Global Solar Radiation Prediction: A Case Study
,”
Int. J. Ambient Energy
,
41
(
1
), pp.
31
40
. 10.1080/01430750.2018.1443498
2.
Guermoui
,
M.
,
Gairaa
,
K.
,
Rabehi
,
A.
,
Djafer
,
D.
, and
Benkaciali
,
S.
,
2018
, “
Estimation of the Daily Global Solar Radiation Based on the Gaussian Process Regression Methodology in the Saharan Climate
,”
Eur. Phys. J. Plus
,
133
(
6
), p.
211
. 10.1140/epjp/i2018-12029-7
3.
Guermoui
,
M.
,
Melgani
,
F.
, and
Danilo
,
C.
,
2018
, “
Multi-Step Ahead Forecasting of Daily Global and Direct Solar Radiation: A Review and Case Study of Ghardaia Region
,”
J. Cleaner Prod.
,
201
, pp.
716
734
. https://doi.org/10.1016/j.jclepro.2018.08.006
4.
Kamadinata
,
J. O.
,
Ken
,
T. L.
, and
Suwa
,
T.
,
2020
, “
Solar Irradiance Fluctuation Prediction Methodology Using Artificial Neural Networks
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031003
. 10.1115/1.4045315
5.
Li
,
P.
,
Bessafi
,
M.
,
Morel
,
B.
,
Chabriat
,
J. P.
,
Delsaut
,
M.
, and
Li
,
Q.
,
2020
, “
Daily Surface Solar Radiation Prediction Mapping Using Artificial Neural Network: The Case Study of Reunion Island
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021009
. 10.1115/1.4045274
6.
Nirudh
,
J.
, and
Somchat
,
J.
,
2019
, “
Estimation of Solar Potential for Thailand Using Adaptive Neurofuzzy Inference System Models
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061009
. 10.1115/1.4043826
7.
Arrif
,
T.
,
Benchabane
,
A.
,
Germoui
,
M.
,
Bezza
,
B.
, and
Belaid
,
A.
,
2018
, “
Optimisation of Heliostat Field Layout for Solar Power Tower Systems Using Iterative Artificial Bee Colony Algorithm: A Review and Case Study
,”
Int. J. Ambient Energy
, pp.
1
16
. 10.1080/01430750.2018.1525581
8.
Guermoui
,
M.
,
Melgani
,
F.
,
Gairaa
,
K.
, and
Mekhalfi
,
M. L.
,
2020
, “
A Comprehensive Review of Hybrid Models for Solar Radiation Forecasting
,”
J. Cleaner Prod.
,
258
, p.
120357
. https://doi.org/10.1016/j.jclepro.2020.120357
9.
Olatomiwa
,
L.
,
Mekhilef
,
S.
,
Shamshirband
,
S.
,
Mohammadi
,
K.
,
Petković
,
D.
, and
Sudheer
,
C.
,
2015
, “
A Support Vector Machine—Firefly Algorithm-Based Model for Global Solar Radiation Prediction
,”
Sol. Energy
,
115
, pp.
632
644
. 10.1016/j.solener.2015.03.015
10.
Mohammadi
,
K.
,
Shamshirband
,
S.
,
Danesh
,
A. S.
,
Zamani
,
M.
, and
Sudheer
,
C.
,
2015
, “
Horizontal Global Solar Radiation Estimation Using Hybrid SVM-Firefly and SVM-Wavelet Algorithms: A Case Study
,”
Nat. Hazards
,
102
, pp.
1613
1614
. 10.1007/s11069-015-2047-5
11.
Shamshirband
,
S.
,
Mohammadi
,
K.
,
Tong
,
C. W.
,
Zamani
,
M.
,
Motamedi
,
S.
, and
Ch
,
S.
,
2016
, “
A Hybrid SVM-FFA Method for Prediction of Monthly Mean Global Solar Radiation
,”
Theor. Appl. Climatol.
,
125
(
1–2
), pp.
53
65
. 10.1007/s00704-015-1482-2
12.
Ibrahim
,
I. A.
, and
Khatib
,
T.
,
2017
, “
A Novel Hybrid Model for Hourly Global Solar Radiation Prediction Using Random Forests Technique and Firefly Algorithm
,”
Energy Convers. Manage.
,
138
, pp.
413
425
. 10.1016/j.enconman.2017.02.006
13.
Behrang
,
M. A.
,
Assareh
,
E.
,
Noghrehabadi
,
A. R.
, and
Ghanbarzadeh
,
A.
,
2011
, “
New Sunshine-Based Models for Predicting Global Solar Radiation Using PSO (Particle Swarm Optimization) Technique
,”
Energy
,
36
(
5
), pp.
3036
3049
. 10.1016/j.energy.2011.02.048
14.
Mohandes
,
M. A.
,
2012
, “
Modeling Global Solar Radiation Using Particle Swarm Optimization (PSO)
,”
Sol. Energy
,
86
(
11
), pp.
3137
3145
. 10.1016/j.solener.2012.08.005
15.
Halabi
,
L. M.
,
Mekhilef
,
S.
, and
Hossain
,
M.
,
2018
, “
Performance Evaluation of Hybrid Adaptive Neuro-Fuzzy Inference System Models for Predicting Monthly Global Solar Radiation
,”
Appl. Energy
,
213
, pp.
247
261
. 10.1016/j.apenergy.2018.01.035
16.
Searson
,
D. P.
,
Leahy
,
D. E.
, and
Willis
,
M. J.
,
2010
, “
GPTIPS: An Open Source Genetic Programming Toolbox for Multigene Symbolic Regression
,”
Proceedings of the International Multiconference of Engineers and Computer Scientists
,
IMECS
,
Hong Kong
, Vol.
1
, pp.
77
80
.
17.
Pan
,
I.
,
Pandey
,
D. S.
, and
Das
,
S.
,
2013
, “
Global Solar Irradiation Prediction Using a Multi-Gene Genetic Programming Approach
,”
J. Renewable Sustainable Energy
,
5
(
6
), p.
063129
. 10.1063/1.4850495
18.
Wang
,
J.
,
Xie
,
Y.
,
Zhu
,
C.
, and
Xu
,
X.
,
2011
, “
Daily Solar Radiation Prediction Based on Genetic Algorithm Optimization of Wavelet Neural Network
,”
2011 International Conference on Electrical and Control Engineering
,
IEEE
, pp.
602
605
.
19.
Mostafavi
,
E. S.
,
Ramiyani
,
S. S.
,
Sarvar
,
R.
,
Moud
,
H. I.
, and
Mousavi
,
S. M.
,
2013
, “
A Hybrid Computational Approach to Estimate Solar Global Radiation: An Empirical Evidence From Iran
,”
Energy
,
49
, pp.
204
210
. 10.1016/j.energy.2012.11.023
20.
Shavandi
,
H.
, and
Ramyani
,
S. S.
,
2013
, “
A Linear Genetic Programming Approach for the Prediction of Solar Global Radiation
,”
Neural Comput. Appl.
,
23
(
3–4
), pp.
1197
1204
. 10.1007/s00521-012-1039-6
21.
Demirhan
,
H.
, and
Atilgan
,
Y. K.
,
2015
, “
New Horizontal Global Solar Radiation Estimation Models for Turkey Based on Robust Coplot Supported Genetic Programming Technique
,”
Energy Convers. Manage.
,
106
, pp.
1013
1023
. 10.1016/j.enconman.2015.10.038
22.
Aybar-Ruiz
,
A.
,
Jiménez-Fernández
,
S.
,
Cornejo-Bueno
,
L.
,
Casanova-Mateo
,
C.
,
Sanz-Justo
,
J.
,
Salvador-González
,
P.
, and
Salcedo-Sanz
,
S.
,
2016
, “
A Novel Grouping Genetic Algorithm–Extreme Learning Machine Approach for Global Solar Radiation Prediction From Numerical Weather Models Inputs
,”
Sol. Energy
,
132
, pp.
129
142
. 10.1016/j.solener.2016.03.015
23.
Jovanovic
,
R.
,
Pomares
,
L. M.
,
Mohieldeen
,
Y. E.
,
Perez-Astudillo
,
D.
, and
Bachour
,
D.
,
2017
, “
An Evolutionary Method for Creating Ensembles With Adaptive Size Neural Networks for Predicting Hourly Solar Irradiance
,”
2017 International Joint Conference on Neural Networks (IJCNN)
,
IEEE
, pp.
1962
1967
. 10.1109/IJCNN.2017.7966091
24.
Jadidi
,
A.
,
Menezes
,
R.
,
de Souza
,
N.
, and
de Castro Lima
,
A.
,
2018
, “
A Hybrid ga–Mlpnn Model for One-Hour-Ahead Forecasting of the Global Horizontal Irradiance in Elizabeth City, North Carolina
,”
Energies
,
11
(
10
), p.
2641
. 10.3390/en11102641
25.
Linares-Rodriguez
,
A.
,
Ruiz-Arias
,
J. A.
,
Pozo-Vazquez
,
D.
, and
Tovar-Pescador
,
J.
,
2013
, “
An Artificial Neural Network Ensemble Model for Estimating Global Solar Radiation From Meteosat Satellite Images
,”
Energy
,
61
, pp.
636
645
. 10.1016/j.energy.2013.09.008
26.
Linares-Rodriguez
,
A.
,
Quesada-Ruiz
,
S.
,
Pozo-Vazquez
,
D.
, and
Tovar-Pescador
,
J.
,
2015
, “
An Evolutionary Artificial Neural Network Ensemble Model for Estimating Hourly Direct Normal Irradiances From Meteosat Imagery
,”
Energy
,
91
, pp.
264
273
. 10.1016/j.energy.2015.08.043
27.
Karaboga
,
D.
,
2005
, “
An Idea Based on Honey Bee Swarm for Numerical Optimization (Vol. 200)
,”
Engineering Faculty, Computer Engineering Department, Erciyes University
,
Kayseri, Turkey
, Technical report-tr06.
28.
Karaboga
,
D.
, and
Basturk
,
B.
,
2007
, “
A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm
,”
J. Glob. Optim.
,
39
(
3
), pp.
459
471
. 10.1007/s10898-007-9149-x
29.
Tolabi
,
H. B.
,
Moradib
,
M.
, and
Tolabia
,
F. B.
,
2013
, “
New Technique for Global Solar Radiation Forecast Using Bees Algorithm
,”
Int. J. Eng.
,
26
(
11
), pp.
1104
1111
. 10.5829/idosi.ije.2013.26.11b.14
30.
Tolabi
,
H. B.
,
Ayob
,
S. B. M.
,
Moradi
,
M. H.
, and
Shakarmi
,
M.
,
2014
, “
New Technique for Estimating the Monthly Average Daily Global Solar Radiation Using Bees Algorithm and Empirical Equations
,”
Environ. Prog. Sustainable Energy
,
33
(
3
), pp.
1042
1050
. 10.5829/idosi.ije.2013.26.11b.14
31.
Salcedo-Sanz
,
S.
,
Casanova-Mateo
,
C.
,
Pastor-Sánchez
,
A.
, and
Sánchez-Girón
,
M.
,
2014
, “
Daily Global Solar Radiation Prediction Based on a Hybrid Coral Reefs Optimization–Extreme Learning Machine Approach
,”
Sol. Energy
,
105
, pp.
91
98
.10.1016/j.solener.2014.04.009
32.
Salcedo-Sanz
,
S.
,
Jiménez-Fernández
,
S.
,
Aybar-Ruiz
,
A.
,
Casanova-Mateo
,
C.
,
Sanz-Justo
,
J.
, and
García-Herrera
,
R.
,
2017
, “
A CRO-Species Optimization Scheme for Robust Global Solar Radiation Statistical Downscaling
,”
Renewable Energy
,
111
, pp.
63
76
. 10.1016/j.renene.2017.03.079
33.
Salcedo-Sanz
,
S.
,
Deo
,
R. C.
,
Cornejo-Bueno
,
L.
,
Camacho-Gómez
,
C.
, and
Ghimire
,
S.
,
2018
, “
An Efficient Neuro-Evolutionary Hybrid Modelling Mechanism for the Estimation of Daily Global Solar Radiation in the Sunshine State of Australia
,”
Appl. Energy
,
209
, pp.
79
94
. 10.1016/j.apenergy.2017.10.076
34.
Wang
,
J.
,
Jiang
,
H.
,
Wu
,
Y.
, and
Dong
,
Y.
,
2015
, “
Forecasting Solar Radiation Using an Optimized Hybrid Model by Cuckoo Search Algorithm
,”
Energy
,
81
, pp.
627
644
. 10.1016/j.energy.2015.01.006
35.
Jiang
,
H.
,
Dong
,
Y.
,
Wang
,
J.
, and
Li
,
Y.
,
2015
, “
Intelligent Optimization Models Based on Hard-Ridge Penalty and RBF for Forecasting Global Solar Radiation
,”
Energy Convers. Manage.
,
95
, pp.
42
58
. 10.1016/j.enconman.2015.02.020
36.
Jiang
,
H.
,
2017
, “
A Novel Approach for Forecasting Global Horizontal Irradiance Based on Sparse Quadratic RBF Neural Network
,”
Energy Convers. Manage.
,
152
, pp.
266
280
. 10.1016/j.enconman.2017.09.043
37.
Mousavi
,
S. M.
,
Mostafavi
,
E. S.
,
Jaafari
,
A.
,
Jaafari
,
A.
, and
Hosseinpour
,
F.
,
2015
, “
Using Measured Daily Meteorological Parameters to Predict Daily Solar Radiation
,”
Measurement
,
76
, pp.
148
155
. 10.1016/j.measurement.2015.08.004
38.
Gupta
,
R. A.
,
Kumar
,
R.
, and
Bansal
,
A. K.
,
2015
, “
BBO-Based Small Autonomous Hybrid Power System Optimization Incorporating Wind Speed and Solar Radiation Forecasting
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
1366
1375
. 10.1016/j.rser.2014.09.017
39.
Jiang
,
H.
, and
Dong
,
Y.
,
2016
, “
A Nonlinear Support Vector Machine Model With Hard Penalty Function Based on Glowworm Swarm Optimization for Forecasting Daily Global Solar Radiation
,”
Energy Convers. Manage.
,
126
, pp.
991
1002
. 10.1016/j.enconman.2016.08.069
40.
Jiang
,
H.
,
Dong
,
Y.
, and
Xiao
,
L.
,
2017
, “
A Multi-Stage Intelligent Approach Based on an Ensemble of Two-Way Interaction Model for Forecasting the Global Horizontal Radiation of India
,”
Energy Convers. Manage.
,
137
, pp.
142
154
. 10.1016/j.enconman.2017.01.040
41.
Bigdeli
,
N.
,
Borujeni
,
M. S.
, and
Afshar
,
K.
,
2017
, “
Time Series Analysis and Short-Term Forecasting of Solar Irradiation, a New Hybrid Approach
,”
Swarm Evol. Comput.
,
34
, pp.
75
88
. 10.1016/j.swevo.2016.12.004
42.
Heng
,
J.
,
Wang
,
J.
,
Xiao
,
L.
, and
Lu
,
H.
,
2017
, “
Research and Application of a Combined Model Based on Frequent Pattern Growth Algorithm and Multi-Objective Optimization for Solar Radiation Forecasting
,”
Appl. Energy
,
208
, pp.
845
866
. 10.1016/j.apenergy.2017.09.063
43.
Guermoui
,
M.
,
Boland
,
J.
, and
Rabehi
,
A.
,
2020
, “
On the Use of BRL Model for Daily and Hourly Solar Radiation Components Assessment in a Semiarid Climate
,”
Eur. Phys. J. Plus
,
135
(
2
), p.
214
. 10.1140/epjp/s13360-019-00085-0
44.
Gairaa
,
K.
,
Benkaciali
,
S.
, and
Guermoui
,
M.
,
2019
, “
Clear-Sky Models Evaluation of Two Sites Over Algeria for PV Forecasting Purpose
,”
Eur. Phys. J. Plus
,
134
(
10
), p.
534
. 10.1140/epjp/i2019-12917-2
45.
Guermoui
,
M.
,
Abdelaziz
,
R.
,
Gairaa
,
K.
,
Djemoui
,
L.
, and
Benkaciali
,
S.
,
2019
, “
New Temperature-Based Predicting Model for Global Solar Radiation Using Support Vector Regression
,”
Int. J. Ambient Energy
, pp.
1
11
. 10.1080/01430750.2019.1708792
46.
Guermoui
,
M.
,
Rabehi
,
A.
,
Gairaa
,
K.
, and
Benkaciali
,
S.
,
2018
, “
Support Vector Regression Methodology for Estimating Global Solar Radiation in Algeria
,”
Eur. Phys. J. Plus
,
133
(
1
), p.
22
. 10.1140/epjp/i2018-11845-y
47.
Suykens
,
J. A.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural Proc. Lett.
,
9
(
3
), pp.
293
300
. 10.1023/A:101862860
48.
Lin
,
K. P.
, and
Pai
,
P. F.
,
2016
, “
Solar Power Output Forecasting Using Evolutionary Seasonal Decomposition Least-Square Support Vector Regression
,”
J. Cleaner Prod.
,
134
, pp.
456
462
. 10.1016/j.jclepro.2015.08.099
49.
Suykens
,
J. A. K.
,
Lukas
,
L.
,
Van Dooren
,
P.
,
De Moor
,
B.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers: A Large Scale Algorithm
,”
European Conference on Circuit Theory and Design, ECCTD
, Vol.
99
, pp.
839
842
.
50.
Ekici
,
B. B.
,
2014
, “
A Least Squares Support Vector Machine Model for Prediction of the Next Day Solar Insolation for Effective Use of PV Systems
,”
Measurement
,
50
, pp.
255
262
. 10.1016/j.measurement.2014.01.010
51.
Hong
,
W.-C.
,
2013
,
Intelligent Energy Demand Forecasting
,
Lect. Notes Energy
,
10
. 10.1007/978-1-4471-4968-2
52.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
,
Independent Coordinates for Strange Attractors From Mutual Information
,
Phys. Rev. A
,
33
(
2
)
1134
1140
. 10.1103/PhysRevA.33.1134
You do not currently have access to this content.