Abstract

H2/CO production via H2O/CO2 splitting powered by concentrated solar energy is a promising pathway for energy conversion/storage. Oxygen permeable membrane reactor serves as an alternative reactor concept for realizing this chemical path with the advantages of continuous production, easy integration, and high product selectivity. In this paper, a mathematical model of steady-state mass and heat transfer coupled with reaction kinetics in the oxygen permeation membrane reactor was established. CO2 splitting in the ceria membrane reactor was simulated and the effects of various factors, including inert/CO2 flow configurations, reaction conditions, and geometric parameters of the membrane, on the CO2 conversion process, were studied. The increase of operating temperature could effectively improve the CO2 conversion ratio, and the effect of decreasing the oxygen pressure of the inert gas is very limited. The oxygen accumulation in the inert gas could lead to considerably high inert demand. Furthermore, conversion-limiting factors were studied under different conditions and there are two critical rate constants of reactions signifying a transition from a chemical kinetics limited conversion to oxygen diffusion limited conversion. This work helps guide reactor design and operate toward achieving the maximum CO2 conversion ratio.

References

1.
Lewis
,
N. S.
, and
Nocera
,
D. G.
,
2006
, “
Powering the Planet: Chemical Challenges in Solar Energy Utilization
,”
Proceedings National Academy Sci.
,
103
(
43
), pp.
15729
15735
. 10.1073/pnas.0603395103
2.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen: A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
. 10.1016/j.solener.2003.12.012
3.
Meier
,
A.
, and
Steinfeld
,
A.
,
2010
,
Advances in Science and Technology
, Vol.
74
,
Trans Tech Publications
, pp.
303
312
.
4.
Graves
,
C.
,
Ebbesen
,
S. D.
,
Mogensen
,
M.
, and
Lackner
,
K. S.
,
2011
, “
Sustainable Hydrocarbon Fuels by Recycling CO2 and H2O With Renewable or Nuclear Energy
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
1
23
. 10.1016/j.rser.2010.07.014
5.
Xiao
,
L.
,
Wu
,
S. Y.
, and
Li
,
Y. R.
,
2012
, “
Advances in Solar Hydrogen Production via two-Step Water-Splitting Thermochemical Cycles Based on Metal Redox Reactions
,”
Renewable Energy
,
41
, pp.
1
12
. 10.1016/j.renene.2011.11.023
6.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2014
, “
A Review on Solar Thermal Syngas Production via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
254
285
. 10.1016/j.rser.2014.09.039
7.
Perkins
,
C.
, and
Weimer
,
A. W.
,
2009
, “
Solar-Thermal Production of Renewable Hydrogen
,”
AIChE J.
,
55
(
2
), pp.
286
293
. 10.1002/aic.11810
8.
Lu
,
Y.
,
Zhu
,
L.
,
Agrafiotis
,
C.
,
Vieten
,
J.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Solar Fuels Production: Two-Step Thermochemical Cycles with Cerium-Based Oxides
,”
Prog. Energy Combust. Sci.
,
75
, p.
100785
. 10.1016/j.pecs.2019.100785
9.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
,
2006
, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
,
31
(
14
), pp.
2805
2822
. 10.1016/j.energy.2005.11.002
10.
Loutzenhiser
,
P. G.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2010
, “
Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Materials
,
3
(
11
), pp.
4922
4938
. 10.3390/ma3114922
11.
Abanades
,
S.
, and
Chambon
,
M.
,
2010
, “
CO2 Dissociation and Upgrading From Two-Step Solar Thermochemical Processes Based on ZnO/Zn and SnO2/SnO Redox Pairs
,”
Energy Fuel
,
24
(
12
), pp.
6667
6674
. 10.1021/ef101092u
12.
Abanades
,
S.
,
Charvin
,
P.
,
Lemont
,
F.
, and
flamant
,
G.
,
2008
, “
Novel Two-Step SnO2/SnO Water-Splitting Cycle for Solar Thermochemical Production of Hydrogen
,”
Int. J. Hydrogen Energy
,
33
(
21
), pp.
6021
6030
. 10.1016/j.ijhydene.2008.05.042
13.
Tamaura
,
Y.
,
Ueda
,
Y.
,
Matsunami
,
J.
,
Hasegawa
,
N.
,
Nezuka
,
M.
,
Sano
,
T.
, and
Tsuji
,
M.
,
1999
, “
Solar Hydrogen Production by Using Ferrites
,”
Sol. Energy
,
65
(
1
), pp.
55
57
. 10.1016/S0038-092X(98)00087-5
14.
Abanades
,
S.
, and
Villafan-Vidales
,
H. I.
,
2011
, “
CO2 and H2O Conversion to Solar Fuels via Two-Step Solar Thermochemical Looping Using Iron Oxide Redox Pair
,”
Chem. Eng. J.
,
175
, pp.
368
375
. 10.1016/j.cej.2011.09.124
15.
Scheffe
,
J. R.
,
Jianhua
,
L.
,
Alan
,
W.
, and
Weimer
,
2010
, “
A Spinel Ferrite/Hercynite Water-Splitting Redox Cycle
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3333
3340
. 10.1016/j.ijhydene.2010.01.140
16.
Arifin
,
D.
,
Aston
,
V. J.
,
Liang
,
X.
,
McDaniel
,
A. H.
, and
Weimer
,
A. W.
,
2012
, “
CoFe2O4 on a Porous Al2O3 Nanostructure for Solar Thermochemical CO2 Splitting
,”
Energy Environ. Sci.
,
5
(
11
), pp.
9438
9443
. 10.1039/c2ee22090c
17.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(
12
), pp.
1611
1623
. 10.1016/j.solener.2005.12.005
18.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos Trans—R. Soc. A. Math. Phys. Eng. Sci.
,
368
(
1923
), pp.
3269
3294
. 10.1098/rsta.2010.0114
19.
Scheffe
,
J. R.
,
Weibel
,
D.
, and
Steinfeld
,
A.
,
2013
, “
Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
27
(
8
), pp.
4250
4257
. 10.1021/ef301923h
20.
Demont
,
A.
,
Abanades
,
S.
, and
Beche
,
E.
,
2014
, “
Investigation of Perovskite Structures as Oxygen-Exchange Redox Materials for Hydrogen Production From Thermochemical Two-Step Water-Splitting Cycles
,”
J. Phys. Chem. C
,
118
(
24
), pp.
12682
12692
. 10.1021/jp5034849
21.
Mogensen
,
M.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
,
2000
, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ionics
,
129
(
1-4
), pp.
63
94
. 10.1016/S0167-2738(99)00318-5
22.
Ackermann
,
S.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2015
, “
Diffusion of Oxygen in Ceria at Elevated Temperatures and Its Application to H2O/CO2 Splitting Thermochemical Redox Cycles
,”
J. Phys. Chem. C
,
118
(
10
), pp.
5216
5225
. 10.1021/jp500755t
23.
Yokokawa
,
H.
,
Horita
,
T.
,
Sakai
,
N.
,
Yamaji
,
K.
,
Brito
,
M.
,
Xiong
,
Y.
, and
Kishimoto
,
H.
,
2006
, “
Ceria: Relation Among Thermodynamic, Electronic Hole and Proton Properties
,”
Solid State Ionics
,
177
(
19-25
), pp.
1705
1714
. 10.1016/j.ssi.2006.03.006
24.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipinski
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
(
1
), pp.
591
600
. 10.1016/j.energy.2011.10.045
25.
Bader
,
R.
,
Venstrom
,
L. J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production
,”
Energy Fuels
,
27
(
9
), pp.
5533
5544
. 10.1021/ef400132d
26.
Hao
,
Y.
,
Yang
,
C. K.
, and
Haile
,
S. M.
,
2013
, “
High-Temperature Isothermal Chemical Cycling for Solar-Driven Fuel Production
,”
Phys. Chem. Chem. Phys.
,
15
(
40
), p.
17084
. 10.1039/c3cp53270d
27.
Venstrom
,
L. J.
,
Smith
,
R. M. D.
,
Hao
,
Y.
,
Haile
,
S. M.
, and
Davidson
,
J. H.
,
2014
, “
Efficient Splitting of CO2 in an Isothermal Redox Cycle Based on Ceria
,”
Energy Fuels
,
28
(
4
), pp.
2732
2742
. 10.1021/ef402492e
28.
Muhich
,
C. L.
,
Evanko
,
B. W.
,
Weston
,
K. C.
,
Lichty
,
P.
,
Liang
,
X.
,
Martinek
,
J.
, and
Weimer
,
A. W.
,
2013
, “
Efficient Generation of H2 by Splitting Water With an Isothermal Redox Cycle
,”
Science
,
341
(
6145
), pp.
540
542
. 10.1126/science.1239454
29.
Wang
,
H.
,
Hao
,
Y.
, and
Kong
,
H.
,
2015
, “
Thermodynamic Study on Solar Thermochemical Fuel Production With Oxygen Permeation Membrane Reactors
,”
Int. J. Energy Res.
,
39
(
13
), pp.
1790
1799
. 10.1002/er.3335
30.
Uemiya
,
S.
,
Sato
,
N.
,
Ando
,
H.
,
Matsuda
,
T.
, and
Kikuchi
,
E.
,
1990
, “
Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor
,”
Appl. Catalysis
,
67
(
1
), pp.
223
230
. 10.1016/S0166-9834(00)84445-0
31.
Hacarlioglu
,
P.
,
Gu
,
Y.
, and
Oyama
,
S. T.
,
2006
, “
Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor
,”
J. Nat. Gas Chem.
,
15
(
2
), pp.
73
81
. 10.1016/S1003-9953(06)60011-X
32.
Marcoberardino
,
G. D.
,
Sosio
,
F.
,
Manzolini
,
G.
, and
Campanari
,
S.
,
2015
, “
Fixed bed Membrane Reactor for Hydrogen Production From Steam Methane Reforming: Experimental and Modeling Approach
,”
Int. J. Hydrogen Energy
,
40
(
24
), pp.
7559
7567
. 10.1016/j.ijhydene.2014.11.045
33.
Liguori
,
S.
,
Iulianelli
,
A.
,
Dalena
,
F.
,
Piemonte
,
V.
,
Huang
,
Y.
, and
Basile
,
A.
,
2014
, “
Methanol Steam Reforming in an Al2O3 Supported Thin Pd-Layer Membrane Reactor Over Cu/ZnO/Al2O3 Catalyst
,”
Int. J. Hydrogen Energy
,
39
(
32
), pp.
18702
18710
. 10.1016/j.ijhydene.2013.11.113
34.
Cecilia
,
M. P.
,
Hugo
,
S.
,
Pacheco Tanaka
,
D. A.
,
Liguori
,
S.
,
Iulianelli
,
A.
,
Basile
,
A.
, and
Mendes
,
A.
,
2015
, “
Cuo/Zno Catalysts for Methanol Steam Reforming: the Role of the Support Polarity Ratio and Surface Area
,”
Appl. Catal., B
,
174–175
, pp.
67
76
. 10.1016/j.apcatb.2015.02.039
35.
Da Silva
,
A. M.
,
Mattos
,
L. V.
,
Múnera
,
J.
,
Lombardo
,
E.
,
Noronha
,
F. B.
, and
Cornaglia
,
L.
,
2015
, “
Study of the Performance of Rh/La2O3-SiO2 and Rh/CeO2 Catalysts for SR of Ethanol in a Conventional Fixed-Bed Reactor and a Membrane Reactor
,”
Int. J. Hydrogen Energy
,
40
(
11
), pp.
4154
4166
. 10.1016/j.ijhydene.2015.01.106
36.
Hedayati
,
A.
,
Corre
,
O. L.
,
Lacarrière
,
B.
, and
Llorca
,
J.
,
2016
, “
Experimental and Exergy Evaluation of Ethanol Catalytic Steam Reforming in a Membrane Reactor
,”
Catal. Today
,
268
, pp.
68
78
. 10.1016/j.cattod.2016.01.058
37.
Tou
,
M.
,
Michalsky
,
R.
, and
Steinfeld
,
A.
,
2017
, “
Solar-Driven Thermochemical Splitting of CO2 and In situ Separation of CO and O2 Across a Ceria Redox Membrane Reactor
,”
Joule
,
1
(
1
), pp.
146
154
. 10.1016/j.joule.2017.07.015
38.
Tou
,
M.
,
Jin
,
J.
,
Hao
,
Y.
,
Steinfeld
,
A.
, and
Michalsky
,
R.
,
2019
, “
Solar-Driven Co-Thermolysis of CO2 and H2O Promoted by In situ Oxygen Removal Across a Nonstoichiometric Ceria Membrane
,”
Reaction Chem. Eng.
,
8
(
8
), pp.
1431
1438
. 10.1039/C8RE00218E
39.
Furler
,
P.
, and
Steinfeld
,
A.
,
2015
, “
Heat Transfer and Fluid Flow Analysis of a 4kW Solar Thermochemical Reactor for Ceria Redox Cycling
,”
Chem. Eng. Sci.
,
137
, pp.
373
383
. 10.1016/j.ces.2015.05.056
40.
Lapp
,
J.
, and
Lipinski
,
W.
,
2014
, “
Transient Three-Dimensional Heat Transfer Model of a Solar Thermochemical Reactor for H2O and CO2 Splitting via Nonstoichiometric Ceria Redox Cycling
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031006
. 10.1115/1.4026465
41.
Chandran
,
R. B.
,
Bader
,
R.
, and
Lipiński
,
W.
,
2015
, “
Transient Heat and Mass Transfer Analysis in a Porous Ceria Structure of a Novel Solar Redox Reactor
,”
Int. J. Therm. Sci.
,
92
, pp.
138
149
. 10.1016/j.ijthermalsci.2015.01.016
42.
Keene
,
D. J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
A Model of Transient Heat and Mass Transfer in a Heterogeneous Medium of Ceria Undergoing Nonstoichiometric Reduction
,”
J. Heat Trans.
,
135
(
5
), p.
052701
. 10.1115/ES2012-91380
43.
Fuller
,
E. N.
,
Schettler
,
P. D.
, and
Giddings
,
J. C.
,
1966
, “
A new Methon for Prediction of Binary Gas-Phase Diffusion Cofficient
,”
Ind. Eng. Chem.
,
58
(
5
), pp.
18
27
. 10.1021/ie50677a007
44.
Zhu
,
L.
,
Lu
,
Y.
, and
Shen
,
S.
,
2016
, “
Solar Fuel Production at High Temperatures Using Ceria as a Dense Membrane
,”
Energy
,
104
, pp.
53
63
. 10.1016/j.energy.2016.03.108
45.
Blumenthal
,
R. N.
, and
Sharma
,
R. K.
,
1975
, “
Electronic Conductivity in Nonstoichiometric Cerium Dioxide
,”
J. Solid State Chem.
,
13
(
4
), pp.
360
364
. 10.1016/0022-4596(75)90152-8
46.
Keene
,
D. J.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2014
, “
The Effects of Morphology on the Thermal Reduction of Nonstoichiometric Ceria[J]
,”
Chem. Eng. Sci.
,
111
, pp.
231
243
. 10.1016/j.ces.2014.01.010
47.
Zhu
,
L.
, and
Lu
,
Y.
,
2018
, “
Reactivity and Efficiency of Ceria-Based Oxides for Solar CO2 Splitting via Isothermal and Near-Isothermal Cycles
,”
Energy Fuels
,
32
(
1
), pp.
736
746
. 10.1021/acs.energyfuels.7b03284
48.
Bulfin
,
B.
,
Hoffmann
,
L.
,
Oliveira
,
L. D.
,
Knoblauch
,
N.
,
Call
,
F.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Schmücker
,
M.
,
2016
, “
Statistical Thermodynamics of Non-stoichiometric Ceria and Ceria Zirconia Solid Solutions
,”
Phys. Chem. Chem. Phys.
,
18
(
33
), p.
23147
. 10.1039/C6CP03158G
49.
Gozálvez-Zafrilla
,
J. M.
,
Santafé-Moros
,
A.
,
Escolástico
,
S.
, and
Serra
,
J. M.
,
2011
, “
Fluid Dynamic Modeling of Oxygen Permeation Through Mixed Ionic–Electronic Conducting Membranes
,”
J. Membr. Sci.
,
378
(
1-2
), pp.
290
300
. 10.1016/j.memsci.2011.05.016
50.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
. 10.1016/0022-3697(75)90192-4
51.
Bulfin
,
B.
,
Lowe
,
A. J.
,
Keogh
,
K. A.
,
Murphy
,
B. E.
,
Lübben
,
O.
,
Krasnikov
,
S. A.
, and
Shvets
,
I. V.
,
2013
, “
Analytical Model of CeO2 Oxidation and Reduction
,”
J. Phys. Chem. C
,
117
(
46
), pp.
24129
24137
. 10.1021/jp406578z
52.
Ishida
,
T.
,
Gokon
,
N.
,
Hatamachi
,
T.
, and
Kodama
,
T.
,
2014
, “
Kinetics of Thermal Reduction Step of Thermochemical Two-Step Water Splitting Using CeO2 Particles: MASTER-Plot Method for Analyzing Non-Isothermal Experiments
,”
Energy Procedia
,
49
, pp.
1970
1979
. 10.1016/j.egypro.2014.03.209
53.
Bulfin
,
B.
,
Call
,
F.
,
Vieten
,
J.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Shvets
,
I. V.
,
2016
, “
Oxidation and Reduction Reaction Kinetics of Mixed Cerium Zirconium Oxides
,”
J. Phys. Chem. C
,
120
(
4
), pp.
2027
2035
. 10.1021/acs.jpcc.5b08729
54.
Li
,
S.
,
Wheeler
,
V. M.
,
Kumar
,
A.
, and
Lipinski
,
W.
,
2020
, “
Numerical Modelling of Ceria Undergoing Reduction in a Particle-Gas Counter-Flow: Effects of Chemical Kinetics Under Isothermal Conditions
,”
Chem. Eng. Sci.
,
218
, p.
115553
. 10.1016/j.ces.2020.115553
55.
Le Gal
,
A.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2011
, “
CO2 and H2O Splitting for Thermochemical Production of Solar Fuels Using Nonstoichiometric Ceria and Ceria/Zirconia Solid Solutions[J]
,”
Energy Fuels
,
25
(
10
), pp.
4836
4845
. 10.1021/ef200972r
56.
Bulfin
,
B.
,
2019
, “
Thermodynamic Limits of Countercurrent Reactor Systems, With Examples in Membrane Reactors and the Ceria Redox Cycle
,”
Phys. Chem. Chem. Phys.
,
21
(
4
), pp.
2186
2195
. 10.1039/C8CP07077F
57.
Li
,
S.
,
Wheeler
,
V. M.
,
Kreider
,
P. B.
, and
Lipinski
,
W.
,
2019
, “
Thermodynamic Analyses of Fuel Production Via Solar-Driven Ceria-Based Nonstoichiometric Redox Cycling: A Case Study of the Isothermal Membrane Reactor System
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021012
. 10.1115/1.4042228
You do not currently have access to this content.