Graphical Abstract Figure

Detailed Nusselt number ratio distribution, normalized against the Dittus-Boelter correlation

Graphical Abstract Figure

Detailed Nusselt number ratio distribution, normalized against the Dittus-Boelter correlation

Close modal

Abstract

This study investigates the effect of acceleration and deceleration in the turn region of a two-pass, serpentine channel. Channel aspect ratios of 2:1 and 4:1 are considered in three combinations to investigate the effect of acceleration and deceleration through the turn region in a smooth, two-pass channel. For each aspect ratio combination, the experiments include Reynolds numbers ranging from 15,000 to 45,000 in the first passage and from 9,000 to 75,000 in the second pass. Surface heat transfer coefficient (h) distributions are measured by transient thermochromic liquid crystal technique, and the flow field characteristics are measured by tomographic PIV. Enhanced heat transfer on the side wall and downstream in the second pass is observed for all cases. Based on the first-pass Nusselt number (Nu) ratio, the accelerating case provides the best heat transfer enhancement. However, based on the second-pass Nu ratio, the decelerating case is more promising. If the Reynolds number is controlled, the constant cross-sectional case has the highest Nu and h in the turn. If the mass flowrate is controlled, the accelerating case exhibits the lowest overall average Nu and h. The flow field results suggest that the secondary flow induced by the turn is weakened when the flow accelerates after the turn for the accelerating channel. The opposite is observed for the decelerating channel. The strength of the counterrotating vortex pair, turbulence level, and local heat transfer enhancements are closely correlated in a serpentine channel.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Wright
,
L. M.
, and
Han
,
J.-C.
,
2013
, “
Heat Transfer Enhancement for Turbine Blade Internal Cooling
,” Proceedings of the ASME 2013 Heat Transfer Summer Conference Collocated With the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, Vol.
3
: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles, San Antontio, TX, June 3–7, p.
V003T23A005
.
3.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotat. Mach.
,
2013
(
1
), p.
275653
.
4.
Han
,
J.-C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
140
(
11
), p.
113001
.
5.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
6.
Chyu
,
M. K.
, and
Siw
,
S. C.
,
2013
, “
Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021008
.
7.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,” P
roceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 3C: Heat Transfer
,
San Antonio, TX
,
June 3–7
, p.
V03CT14A002
.
8.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceedings of the ASME Turbo Expo 2017: Power for Land, Sea, and Air, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
,
Charlotte, NC
,
June 26–30
, p.
V001T51A001
.
9.
Zhang
,
G.
,
Zhu
,
R.
,
Xie
,
G.
,
Li
,
S.
, and
Sund’en
,
B.
,
2022
, “
Optimization of Cooling Structures in Gas Turbines: A Review
,”
Chin. J. Aeronaut.
,
35
(
6
), pp.
18
46
.
10.
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat. Mass. Transfer.
,
40
(
11
), pp.
2525
2537
.
11.
Chen
,
W.
,
Ren
,
J.
, and
Jiang
,
H.
,
2011
, “
Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
,”
ASME J. Turbomach.
,
133
(
4
), p.
041012
.
12.
Chen
,
A. F.
,
Wu
,
H.-W.
,
Wang
,
N.
, and
Han
,
J. -C.
,
2018
, “
Heat Transfer in a Rotating Cooling Channel (AR=2:1) With Rib Turbulators and a Tip Turning Vane
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
140
(
10
), p.
102007
.
13.
Saravani
,
M. S.
,
Amano
,
R. S.
,
DiPasquale
,
N. J.
, and
Halmo
,
J. W.
,
2020
, “
Turning Guide Vane Effect on Internal Cooling of Two-Passage Channel With Parallel Ribs
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091303
.
14.
Sahin
,
I.
,
Chen
,
A. F.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2020
, “
Effect of 45-Deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio From 4:1 to 2:1
,”
ASME J. Turbomach.
,
142
(
7
), p.
071003
.
15.
Chen
,
A. F.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2019
, “
Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring Reduced Cross-Sectional Area After Tip Turn (Aspect Ratio = 4:1 to 2:1) With Profiled 60 Deg Angled Ribs
,”
ASME J. Turbomach.
,
141
(
7
), p.
071008
.
16.
Alsaleem
,
S. M.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2021
, “
Heat Transfer and Pressure Loss in a Two-Pass, Rectangular Channel Featuring a Reduced Cross-Sectional Area After the 180-Deg Tip Turn With Different Turning Vane Configurations
,”
ASME J. Turbomach.
,
143
(
9
), p.
091015
.
17.
Xu
,
T.
,
Shi
,
D.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2023
, “
Flow and Heat Transfer Characteristics of the Turbine Blade Variable Cross-Section Internal Cooling Channel With Turning Vane
,”
Appl. Sci.
,
13
(
3
), p.
1446
.
18.
Jenkins
,
S. C.
,
Zehnder
,
F.
,
Shevchuk
,
I. V.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Schnieder
,
M.
,
2008
, “
The Effect of Ribs and Tip Wall Distance on Heat Transfer for a Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel
,” Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Vol. 4: Heat Transfer, Parts A and B, Berlin, Germany, June 9–13, pp.
1051
1061
.
19.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
133
(
5
), p.
051701
.
20.
Siddique
,
W.
,
El-Gabry
,
L.
,
Shevchuk
,
I. V.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2012
, “
Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Smooth Channels
,”
Heat Mass Transf.
,
48
(
5
), pp.
735
748
.
21.
Siddique
,
W.
,
Shevchuk
,
I. V.
,
El-Gabry
,
L.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2013
, “
On Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Channel With Ribs at 45
,”
Heat Mass Transf.
,
49
(
5
), pp.
679
694
.
22.
Chen
,
I.-L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2022
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With a Variable Aspect Ratio
,”
ASME J. Turbomach.
,
144
(
2
), p.
021011
.
23.
Chen
,
I.-L.
,
Wright
,
L. M.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2022
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With Various 45-Deg Rib Turbulators and a Tip Turning Vane
,”
J. Therm. Sci. Eng. Appl.
,
15
(
2
), p.
021014
.
24.
Wright
,
L. M.
,
Yang
,
S.-F.
,
Wu
,
H.-W.
,
Han
,
J.-C.
,
Lee
,
C.-P.
,
Azad
,
S.
, and
Um
,
J.
,
2020
, “
Heat Transfer in a Rotating, Blade-Shaped Serpentine Cooling Passage With Discrete Ribbed Walls at High Reynolds Numbers
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
142
(
1
), p.
012002
.
25.
Chanteloup
,
D.
,
Juaneda
,
Y.
, and
Bölcs
,
A.
,
2002
, “
Combined 3-D Flow and Heat Transfer Measurements in a 2-Pass Internal Coolant Passage of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
124
(
4
), pp.
710
718
.
26.
Elfert
,
M.
,
Jarius
,
M. P.
, and
Weigand
,
B.
,
2004
, “
Detailed Flow Investigation Using PIV in a Typical Turbine Cooling Geometry With Ribbed Walls
,” Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vol.
3: Turbo Expo 2004
, Reno, NV, June 14–17, pp.
533
545
.
27.
Baek
,
S.
,
Kook
,
D.
,
Kim
,
C.
,
Bang
,
M.
, and
Hwang
,
W.
,
2022
, “
Investigation of the Relationship Between the 3D Flow Structure and Surface Heat Transfer Within a Realistic Gas Turbine Blade Trailing Edge Internal Serpentine Cooling Channel
,”
Int. J. Heat. Mass. Transfer.
,
198
, p.
123357
.
28.
Ma
,
H.
,
Liu
,
Y.
,
Lai
,
Y.
,
Ouyang
,
H.
,
Ning
,
J.
,
Jiang
,
X.
, and
Xu
,
Q.
,
2023
, “
Magnetic Resonance Velocimetry of a Turbine Blade With Engine-Representative Internal and Film Cooling Structures
,”
ASME J. Turbomach.
,
145
(
1
), p.
011004
.
29.
Benson
,
M. J.
,
Van Poppel
,
B. P.
,
Elkins
,
C. J.
, and
Owkes
,
M.
,
2019
, “
Three-Dimensional Velocity and Temperature Field Measurements of Internal and External Turbine Blade Features Using Magnetic Resonance Thermometry
,”
ASME J. Turbomach.
,
141
(
7
), p.
071011
.
30.
Ekkad
,
S. V.
, and
Han
,
J. -C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), p.
957
.
31.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
(
January
), pp.
3
8
.
32.
Yan
,
Y.
, and
Owen
,
J.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.
You do not currently have access to this content.