Eddy current dampers, or electromagnetic dampers, have advantages of no mechanical contact, high reliability, and stability, but require a relatively large volume and mass to attain a given amount of damping. In this paper, we present the design and analysis of a new type of eddy current damper with remarkably high efficiency and compactness. Instead of orienting the magnetic field in a uniform direction, we split the magnetic field into multiple ones with alternating directions so as to reduce the electrical resistance of the eddy current loops and increase the damping force and damping coefficient. In this paper, an analytical model based on the electromagnetic theory for this type of eddy current damper is proposed, and a finite-element analysis (FEA) is carried out to predict the magnetic field and current density. Experimental results agree well with the analytical model and FEA predictions. We demonstrate that the proposed eddy current damper achieves a damping density (Ns/mm3) and a dimensionless damping constant as much as 3–5 times as those in the literature. The dependence of damping on velocity and frequency is also examined.

1.
Lin
,
C. H.
,
Hung
,
S. K.
,
Chen
,
M. Y.
,
Li
,
S. T.
, and
Fu
,
L. C.
, 2008, “
Novel High Precision Electromagnetic Flexure-Suspended Positioning Stage With an Eddy Current Damper
,”
International Conference on Control, Automation and Systems
, Seoul, Korea.
2.
Plissi
,
M. V.
,
Torrie
,
C. I.
,
Barton
,
M.
,
Robertson
,
N. A.
,
Grant
,
A.
,
Cantley
,
C. A.
,
Strain
,
K. A.
,
Willems
,
P. A.
,
Romie
,
J. H.
,
Skeldon
,
K. D.
,
Perreur-Lloyd
,
M. M.
,
Jones
,
R. A.
, and
Hough
,
J.
, 2004, “
An Investigation of Eddy-Current Damping of Multi-Stage Pendulum Suspensions for Use in Interferometric Gravitational Wave Detectors
,”
Rev. Sci. Instrum.
0034-6748,
75
, pp.
4516
4522
.
3.
Kienholz
,
D. A.
,
Smith
,
C. A.
, and
Haile
,
W. B.
, 1996, “
A Magnetically Damped Vibration Isolation System for a Space Shuttle Payload
,”
Proc. SPIE
0277-786X,
2720
, pp.
272
280
.
4.
Kligerman
,
Y.
,
Grushkevich
,
A.
, and
Darlow
,
M. S.
, 1998, “
Analytical and Experimental Evaluation of Instability in Rotordynamic System With Electromagnetic Eddy-Current Damper
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
272
278
.
5.
Kim
,
Y. B.
,
Hwang
,
W. G.
,
Kee
,
C. D.
, and
Yi
,
H. B.
, 2001, “
Active Vibration Control of a Suspension System Using an Electromagnetic Damper
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
215
, pp.
865
873
.
6.
Ebrahimi
,
B.
,
Behrad Khamesee
,
M.
, and
Farid Golnaraghi
,
M.
, 2008, “
Design and Modeling of a Magnetic Shock Absorber Based on Eddy Current Damping Effect
,”
J. Sound Vib.
0022-460X,
315
, pp.
875
889
.
7.
Ebrahimi
,
B.
,
Behrad Khamesee
,
M.
, and
Farid Golnaraghi
,
M.
, 2009, “
Eddy Current Damper Feasibility in Automobile Suspension: Modeling, Simulation and Testing
,”
Smart Mater. Struct.
0964-1726,
18
, p.
015017
.
8.
Cheng
,
T. H.
, and
Oh
,
I. K.
, 2009, “
Coil-Based Electromagnetic Damper and Actuator for Vibration Suppression of Cantilever Beams
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
, pp.
2237
2247
.
9.
Larose
,
G. L.
,
Larsen
,
A.
, and
Svensson
,
E.
, 1995, “
Modeling of Tuned Mass Dampers for Wind Tunnel Tests on a Full-Bridge Aeroelastic Model
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
54–55
, pp.
427
437
.
10.
Sodano
,
H. A.
, and
Bae
,
J. S.
, 2004, “
Eddy Current Damping in Structures
,”
Shock Vib. Dig.
0583-1024,
36
, pp.
469
478
.
11.
Warmerdam
,
T.
, 2000, “
The Design of a High-Performance Active Damper
,”
The Seventh Mechatronics Forum International Conference
, Atlanta, GA.
12.
Sodano
,
H. A.
, and
Inman
,
D. J.
, 2007, “
Non-Contact Vibration Control System Employing an Active Eddy Current Damper
,”
J. Sound Vib.
0022-460X,
305
, pp.
596
613
.
13.
Sodano
,
H. A.
,
Bae
,
J. S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
, 2006, “
Improved Concept and Model of Eddy Current Damper
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
294
302
.
14.
Kanamori
,
M.
, and
Ishihara
,
Y.
, 1989, “
Finite Element Analysis of an Electromagnetic Damper Taking Into Account the Reaction of Magnetic Field
,”
JSME Int. J., Ser. III
0914-8825,
32
, pp.
36
43
.
15.
Lee
,
K.
, and
Park
,
K.
, 2001, “
Eddy Currents Modeling With the Consideration of the Magnetic Reynolds Number
,”
Proceedings of the 2001 IEEE International Symposium on Industrial Electronics
, Pusan, Korea, pp.
678
683
.
16.
Heald
,
M. A.
, 1988, “
Magnetic Braking: Improved Theory
,”
Am. J. Phys.
0002-9505,
56
, pp.
521
522
.
17.
Wiederick
,
H. H.
,
Gauthier
,
N.
, and
Campbell
,
D. A.
, 1987, “
Magnetic Braking: Simple Theory and Experiment
,”
Am. J. Phys.
0002-9505,
55
, pp.
500
503
.
18.
Kobayashi
,
H.
,
Aida
,
S.
, and
Ishihara
,
Y.
, 1993, “
Development of a Houde Damper Using Magnetic Damping
,”
Proceedings of the 14th Biennial ASME Conference on Vibration and Noise
, Albuquerque, NM.
19.
Nagaya
,
K.
, and
Kojima
,
H.
, 1982, “
Shape Characteristics of a Magnetic Damper Consisting of a Rectangular Magnetic Flux and a Rectangular Conductor
,”
Bull. JSME
0021-3764,
25
, pp.
1306
1311
.
20.
Bae
,
J. S.
,
Kwak
,
M. K.
, and
Inman
,
D. J.
, 2005, “
Vibration Suppression of a Cantilever Beam Using Eddy Current Damper
,”
J. Sound Vib.
0022-460X,
284
, pp.
805
824
.
21.
Hayt
,
W. H.
, and
Buck
,
J. A.
, 2006,
Engineering Electromagnetics
,
McGraw-Hill
,
New York
, Chap. 14.
You do not currently have access to this content.